NEARLY GORENSTEIN AND ALMOST GORENSTEIN 2-DIMENSIONAL NORMAL LOCAL RINGS

TOMOHIRO OKUMA (YAMAGATA UNIV.), KEI-ICHI WATANABE (MEIJI UNIVERSITY AND NIHON UNIVERSOTY), KEN-ICHI YOSHIDA (COLLEGE OF HUMANITY AND SCIENCES, NIHON UNIVERSITY)

This talked is based on our joint work in progress (partially [3]).

The concepts of almost Gorenstein rings (resp. nearly Gorenstein rings) were proposed in [1] (resp. [2]) to find Cohen-Macaulay rings which are "near" to Gorenstein rings.

In this talk, we want to find the condition for a 2-dimensional local ring or a 2-dimensional normal graded ring $R = \bigoplus_{n\geq 0} R_n$ to be nearly Gorenstein using either resolution of singularities $f: X \to \operatorname{Spec}(R)$ or DDP (Demazure-Dolgachev-Pinkham) construction of R.

1. Definitions

Let (A, \mathfrak{m}) be a Noethrian local ring. We assume that A is Cohen-Macaulay and let K_A be the canonical module of A.

Definition 1.1. (1) We write $\operatorname{Tr}_A(K_A) = (f(x) \mid x \in K_A \text{ and } f \in \operatorname{Hom}_A(K_A, A))$ and call it the **canonical trace ideal** of A. Note that $\operatorname{Tr}_A(K_A) = A$ if and only of K_A is a free A-module.

- (2) We say that A is **nearly Gorenstein** if $\mathfrak{m} \subset \operatorname{Tr}_A(K_A)$. By definition, Gorenstein ringes are nearly Gorenstein.
- (3) Put dim A = d. We say that A is almost Gorenstein if for a general element $\omega \in K_A$, $K_A/A\omega$ is an Ulrich A-module of dimension d-1. It is easy to show that an almost Gorenstein ring of dimension 1 is nearly Gorenstein.
- (4) If U is a finitely generated A-module of dimension d, we say that U is an **Ulrich** A-module if multiplicity of M is equal to $\mu_A(M) := \dim_{A/\mathfrak{m}} M/\mathfrak{m}M$.

2. Computation of Canonical Trace ideal of a 2-dimensional normal ring via resolution of singularities

Let (A, \mathfrak{m}, k) be an excellent two-dimensional normal local domain containing an algebraically closed field isomorphic to the residue field k and let K_A denote a canonical module of A. Let $\pi \colon X \to \operatorname{Spec}(A)$ be a resolution of singularities with exceptional set $\mathbb{E} := \pi^{-1}(\mathfrak{m})$ and $\mathbb{E} = \bigcup_{i=1}^n E_i$ the decomposition into the irreducible components. An element $Z \in \bigoplus_{i=1}^r \mathbb{Z}E_i$ is called a *cycle* and if $Z = \sum_{i=1}^r n_i E_i$, we say Z > 0 if all $n_i \geq 0$ and $Z \neq 0$.

Definition 2.1. (1) Intersection theory on \mathbb{ZE} is defined and ite is known that the intersection matrix $(E_i E_j)_{i,j=1}^r$ is **negative definite**.

- (1) a cycle Z > 0 is called **anti-nef** if $ZE_i \leq 0$ for every E_i .
- (2) There exists minimal anti-nef cycle and we call it the **fundamental cycle** and denote it by Z_f .

(3) We call a sequence $W = Y_0 < Y_1 < \ldots < Y_N$ a **computation sequence** from W if for every i, $Y_{i+1} = Y_i + E_{j_i}$ with $Y_i E_{j_i} > 0$ and Y_N is anti-nef. There are many choices of computation sequences from W, but every computation sequence terminates at the minimal anti-nef cycle > W.

Definition 2.2. Let L be a divisor on X. Since X is regular, $\mathcal{O}_X(L)$ is an invertible \mathcal{O}_X -module. A cycle W > 0 is a fixed component of L if the natural inclusion $\mathcal{O}_X(L - W) \subset \mathcal{O}_X(L)$ induces bijection $H^0(X, \mathcal{O}_X(L - W)) = H^0(X, \mathcal{O}_X(L))$. If for every E_i , $H^0(X, \mathcal{O}_X(L - E_i) \subseteq H^0(X, \mathcal{O}_X(L))$, we say that L is fixed-cimponent free. The maximal fixed component of L is called the **fixed component** of L.

We denote by K_X denote the canonical divisor on X. If A is a rational, then K_X is fixed component free and $H^0(X, \mathcal{O}_X(K_X)) = K_A$. (If A is not rational, we must add C_X to have $K_A = H^0(X, \mathcal{O}_X(K_X + C_X))$.

Proposition 2.3. Assume that L has no fixed components and let $F \geq 0$ be the fixed component of -L. Then we have $\operatorname{Tr}_{H^0(\mathcal{O}_X(L))}(A) \subset H^0(\mathcal{O}_X(-F))$.

The main result of this talk is the following Theorem.

Theorem 2.4. If A is a rational singularity, then A is nearly Gorenstein if and only if $K_X + Z_f$ is anti-nef. Otherwise, if a computation sequence starting from $K_X + Z_f$ terminates at $K_X + W$, then $\text{Tr}_A(K_A) = H^0(X, \mathcal{O}_X(-W))$.

Using this Theorem, we can classify the resolution graph of nearly Gorenstein rational singularities in the case the graph is "star-shaped".

3. NEARLY GORENSTEIN NORMAL GRADED RINGS.

Let $R = \bigoplus_{n\geq 0} R_n$ be a **normal graded** ring of dimension $d\geq 2$ finitely generated over a field $R_0=k$. Then the canonical module K_R of R has a natural structure of a graded R-module and also is a reflexive R-module of rank 1. Then we can consider K_R as a graded submodule of $Q(R) = S^{-1}R$, where S is the set of all nonzero homogeneous elements of R. We fix an embedding of $K_R \subset Q(R)$ as a graded fractional ideal of R. Then K_R^{-1} is generated by all homogeneous elements $\phi \in Q(R)$ such that $\phi K_R \subset R$ and R is nearly Gorenstein if and only if

$$\mathfrak{m}_R = R_+ \subset K_R \, \mathrm{K}_R^{-1}$$
.

Since K_R and K_R^{-1} can be precisely described by geometric data of X = Proj(R) and $K_X, -K_X$, we can determine the nearly Gorenstein properties of normal graded rings in many examples.

In particular, we can show that 2-dimensional normal local (or graded) graded rings, which are almost Gorenstein **and** nearly Gorenstein are very few if R is not rational or elliptic.

References

- [1] Shiro Goto, Ryo Takahashi, and Naoki Taniguchi, Almost Gorenstein rings—towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), no. 7, 2666–2712.
- [2] Jürgen Herzog, Takayuki Hibi, and Dumitru I. Stamate, *The trace of the canonical module*, Israel J. Math. **233** (2019), no. 1, 133–165.
- [3] Tomohiro Okuma, Kei-ichi Watanabe, and Ken-ichi Yoshida, A geometric description of almost Gorensteinness for two-dimensional normal singularities, arXiv:2410.23911.